By Samuel W. Anderson

Trying to predict where genetics and genomics will be in 20 years is a bit like filling out your "March Madness" bracket five years in advance. Nevertheless, we managed to convince seventeen experts to take a stab at it, perhaps sold partly on my promise to preface this issue with the acknowledgement that the assignment itself is unattainable, unreasonable, and perhaps even a touch absurd.

All true. In fact, I'll admit that when we first floated the idea, we were thinking "Genetics in 100 years," with the possibility of being talked down to 50 years. Believe it or not, nobody wanted to take that on (well, almost nobody-thanks for being a sport, Hank Greely!). In retrospect, it's easy to see why. Attempting to predict anything 50 or 100 years down the road is serious guesswork when you think about what has changed in the last 50 or 100 years; but forecasting a field as fast-moving as genetics that far into the future is truly outlandish.

As some of the contributors on the following pages are quick to point out, 20 years is no easy task either. ("I feel like it would be sci-fi even if we were talking three to five years," remarks Anne Wojcicki, founder and CEO of consumer genomics company 23andMe.) It has been only 12 years since Francis Collins announced the first rough draft of the human genome and nine years since the completion of the first "essentially complete" human genome. Since then, changes have come rapidly in genetic and genomic research and technologies. What can we expect in 2032? If you don't find this question sufficiently daunting, imagine asking someone in 1992 about the future of personal computing. How many people would you have to ask before one of them would predict that nearly half of all Americans would own a personal computer (with a far faster processor and larger hard drive than anything in their time), telephone, camera, and music player all in one device about the size of a pack of gum?

Don't ask me what genetics and genomics' smartphone equivalent will be in 20 years - we have experts for that. In fact, this is almost certainly our most illustrious cast of GeneWatch contributors yet: from Eric Green, Director of the National Human Genome Research Institute, to Congresswoman Louise Slaughter; from every major newspaper's go-to bioethicists in Arthur Caplan, Hank Greely and George Annas, to esteemed researchers George Church, James P. Evans and Steven Salzberg; and representatives of the private sector, including Anne Wojcicki of 23andMe, Joe Hammang of Pfizer and Paul Billings of LifeTechnologies. This issue's impressive cast came up with predictions falling all over the map. Quite a few of these responses raise truly novel possibilities, some particularly valiant in their boldness, and several capitalized on the invitation to take creative license. This issue is as appropriate a time as any to set aside conventions; whatever the method of forecasting the future of genetics and genomics, there is bound to be some madness in it.

Samuel W. Anderson is Editor of GeneWatch. 

Search: GeneWatch
The Gene Myths series features incisive, succinct articles by leading scientists disputing the exaggerations and misrepresentations of the power of genes.
View Project
CRG has investigated and reported on the commercial claims made about genetically modified crops and transgenic animals introduced into the food supply.
View Project